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Intro: Quhits

Qubit: Analogous to a classical bit, but instead of binary states have
superposition properties where quantum state can be a linear combination

of 0 and 1.
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Quantum Gate: Converts a qubit from one quantum state to another

o Single-qubit gates (Hadamard gate: to create a state of

superposition in qubit)
o  Multi-qubit gates (CNOT gate: to create quantum entanglement)



Intro: Quantum Algorithms
Hy = By
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Goal: Minimize cost function by...

Finding ground-state energy!
(Or a good approximation)

E(61,--,0,) = (H) = Za? ($(B1, -+, 0n)|Pil1(61, - -, On))



Intro: Quantum Algorithms B0y, 00) = (H) = Y (00, 00 P (0, )
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minimize energy
- Repeat until convergence
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(QAOA) Quantum Approximate Optimization Algorithm
(SPSA) Simultaneous Perturbation Stochastic Approximation
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Lambeq: Overview

e Python library used for quantum NLP.
e High level: Converts input sentences into quantum circuits. Tunable
structures to parameterize nouns, verbs, etc.
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| |from lambeq.ccg2discocat import DepCCGParser

2 [from lambeq.rewrite import Rewriter

4 |# Parse the sentence

5 |diagram = depccg_parser.sentence2diagram(’John walks in the park’)
6

7 |# Apply rewrite rule for prepositional phrases

8 |rewriter = Rewriter([’prepositional_phrase’])

9 |rewritten_diagram = rewriter (diagram)

10

Il |rewritten_diagram.draw()

Rewriting: By
simplifying the string ‘/\||/\‘r//\ll/\“/\‘ '/\\I/\||/\|'/\|,/\|
diagram representing a John walks /2 John walks
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SPSA Optimizer:

Traditional Gradient Descent:
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Replace O(d) with O(1): Random sampling. (Not great, but unbiased)
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* SPSA of the Quantum Fisher Information, Gacon et. al 2021



SPSA Optimizer:

Traditional Gradient Descent 2nd Order Approximation
g(k+1) — g(k) _ nvf(g(k)) o+ = 9(k) _ nH-1(0*)YW (6.
H -> Hessian of f. Not unbiased!!!
1st-Order SPSA 2nd-Order SPSA
v iO®) ~ f(0P) +eA®) — F(0F) —eAW) ) k) — 9f APAPT + AP AP
2¢ o 2¢? 2
QN-SPSA (H->g)
gij(0) = Re{ <g—;: (%J> - <g—;l- -w> <‘L,t'.' %>} @(k) - _% gf; A(lk)A'(zk)T ; Agk)A(lk)T

WD B e s
95(8) = =3 g2 5o V@ WO)

0'=0

* SPSA of the Quantum Fisher Information, Gacon et. al 2021



Quantum Model:

Input sentences as circuits
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Recap: Quantum Simulation

Initialize model to pass sentence circuits into.
Initialize loss function

Use optimizer (SPSA) to calculate ‘Energy’ (loss).
Repeat until convergence

i & |
Used binary-cross entropy loss function. H,(g) = N Z y; - log(p(y;)) + (1 = y;) - log(1 — p(y;))
i=1

Used “shot” data (8192) gathered from experiments to simulate quantum computation.



ORNN: Qverview

- Iteratively apply QRNN cells to the input sequence, which perform
parametrized rotations with nonlinear activation
- Use traditional optimizers (simulation) or SPSA
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Amplitude Amplification and Architecture

- QRNN cells are run in the Repeat-until-success (RUS) mode
Allows desired operations to be implemented in fewer Clifford gates

- Success indicated by measuring 0 on ancilla, otherwise undo and retry
- Increase probability of success with oblivious amplitude amplification
(OAA)
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Results



Loss Function Convergence

- QRNN sees rapid convergence in ~80 batches with subsequent overfitting
- Consistent with empirical performance analysis by Bausch et. al
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Training Accuracy Results

Models
Single Parameterized Cell Recurrent Circuit
Classical Embedding
63.9% 75.8%
Embeddings
Lambeq Embedding Limited by Hardware

69.60% Capability



Discussion

Classical
Embedding

Lambeq
Embedding

Single Parameterized Cell

Base Model

Limited by Model Complexity

O
O

Input size is constrained
Slow when processing long
inputs and using large
models

Recurrent Circuit

Limited by Embedding Complexity

O

O

Input width was 5 bits, 439 trainable
parameters

Only naive character-level embeddings
could be used (vs Word2Vec, etc)

Future Work

O

If good embeddings can be obtained, can
have similar results with only a small
number of parameters
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Intro: NLP & Sentiment Analysis

e Unfortunately, current classical NLP models find this task somewhat
difficult.

o Context-dependent
o Other difficulties include non-straightforward speech like sarcasm.
o This added complexity to a body of text leads to inaccurate classification

e Due to the difficulties that classical models face, we aim to test whether a
quantum model will be able to perform sentiment analysis better.



Quantum Circuit

e Quantum Circuits:

o Model for quantum computation, where the computation is carried out by an ordered
sequence of quantum gates that work together to create the desired quantum states of
certain qubits

o Can parameterized quantum circuits that contain variational quantum gates.

m quantum algorithms that depend on free parameters
o Run quantum circuits on quantum computers to perform calculations to solve problems

e Relating to sentiment analysis:

o At high level, words in each input sentence are transformed into quantum states by using
parameterized/variational quantum gates



