Sentiment Analysis Using Quantum Neural Networks

Owen Bardeen, Thomas Lu, Nathan Song, Tvisha Londhe, Richard Wang, Andris Huang

Background

Intro: Qubits

Qubit: Analogous to a classical bit, but instead of binary states have superposition properties where quantum state can be a linear combination of 0 and 1.

Quantum Gate: Converts a qubit from one quantum state to another

- Single-qubit gates (Hadamard gate: to create a state of superposition in qubit)
- Multi-qubit gates (CNOT gate: to create quantum entanglement)

Goal: Minimize cost function by...

Finding ground-state energy! (Or a good approximation)

$$E(heta_1,\cdots, heta_n)=\langle\hat{H}
angle=\sum_ilpha_i\langle\psi(heta_1,\cdots, heta_N)|\hat{P}_i|\psi(heta_1,\cdots, heta_N)
angle$$

Intro: Quantum Algorithms

(VQE) Variational Quantum Eigensolver

$$egin{aligned} E(heta_1,\cdots, heta_n) &= \langle \hat{H}
angle = \sum_i lpha_i \langle \psi(heta_1,\cdots, heta_N) | \hat{P}_i | \psi(heta_1,\cdots, heta_N) \ \hat{H} \psi &= E \psi \end{aligned}$$

- Enter initial wavefunction
- Run initial circuit
- **Measure** average energy
- Reparameterize circuit to minimize energy
- Repeat until convergence

(QAOA) Quantum Approximate Optimization Algorithm (SPSA) Simultaneous Perturbation Stochastic Approximation

Model

Lambeq: Overview

- Python library used for quantum NLP.
- High level: Converts input sentences into quantum circuits. Tunable structures to parameterize nouns, verbs, etc.

Rewriting: By simplifying the string diagram representing a sentence, we can reduce the number of qubits that it takes to codify a sentence

SPSA Optimizer:

Traditional Gradient Descent:

$$oldsymbol{ heta}^{(k+1)} = oldsymbol{ heta}^{(k)} - \eta oldsymbol{
abla} f(oldsymbol{ heta}^{(k)})$$
 O(d), d => # Dimensions

Replace O(d) with O(1): Random sampling.

(Not great, but *unbiased*)

SPSA

$$\boldsymbol{\nabla} f(\boldsymbol{\theta}^{(k)}) \approx \frac{f(\boldsymbol{\theta}^{(k)} + \epsilon \boldsymbol{\Delta}^{(k)}) - f(\boldsymbol{\theta}^{(k)} - \epsilon \boldsymbol{\Delta}^{(k)})}{2\epsilon} \boldsymbol{\Delta}^{(k)},$$

QN-SPSA:

$$\hat{g}^{(k)} = -\frac{1}{2} \frac{\delta F}{2\epsilon^2} \frac{\boldsymbol{\Delta}_1^{(k)} \boldsymbol{\Delta}_2^{(k)T} + \boldsymbol{\Delta}_2^{(k)} \boldsymbol{\Delta}_1^{(k)T}}{2}$$

* SPSA of the Quantum Fisher Information, Gacon et. al 2021

SPSA Optimizer:

Traditional Gradient Descent 2nd Order Approximation $\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \eta \boldsymbol{\nabla} f(\boldsymbol{\theta}^{(k)})$ $\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \eta H^{-1}(\boldsymbol{\theta}^{(k)}) \boldsymbol{\nabla} f(\boldsymbol{\theta}^{(k)}).$ *H*-> *Hessian of* f. Not unbiased!!! 1st-Order SPSA 2nd-Order SPSA $\hat{H}^{(k)} = \frac{\delta f}{2^2} \frac{\boldsymbol{\Delta}_1^{(k)} \boldsymbol{\Delta}_2^{(k)T} + \boldsymbol{\Delta}_2^{(k)} \boldsymbol{\Delta}_1^{(k)T}}{2^2}$ $\nabla f(\boldsymbol{\theta}^{(k)}) \approx \frac{f(\boldsymbol{\theta}^{(k)} + \epsilon \boldsymbol{\Delta}^{(k)}) - f(\boldsymbol{\theta}^{(k)} - \epsilon \boldsymbol{\Delta}^{(k)})}{2\epsilon} \boldsymbol{\Delta}^{(k)} =$ **QN-SPSA** (H -> g) $g_{ij}(\boldsymbol{\theta}) = \operatorname{Re}\left\{ \left\langle \frac{\partial \psi}{\partial \theta_i} \middle| \frac{\partial \psi}{\partial \theta_j} \right\rangle - \left\langle \frac{\partial \psi}{\partial \theta_i} \middle| \psi \right\rangle \left\langle \psi \middle| \frac{\partial \psi}{\partial \theta_j} \right\rangle \right\} \Longrightarrow$ $\hat{g}^{(k)} = -\frac{1}{2} \frac{\delta F}{2\epsilon^2} \frac{\boldsymbol{\Delta}_1^{(\kappa)} \boldsymbol{\Delta}_2^{(\kappa)T} + \boldsymbol{\Delta}_2^{(\kappa)} \boldsymbol{\Delta}_1^{(\kappa)T}}{2\epsilon^2}$ $g_{ij}(\boldsymbol{\theta}) = -\frac{1}{2} \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_i} |\langle \psi(\boldsymbol{\theta}') | \psi(\boldsymbol{\theta}) \rangle|^2 \bigg|_{\boldsymbol{\theta}_i}$

SPSA

* SPSA of the Quantum Fisher Information, Gacon et. al 2021

Input sentences as circuits

Parameterized Model

Recap: Quantum Simulation

- Initialize model to pass sentence circuits into.
- Initialize loss function
- Use optimizer (SPSA) to calculate 'Energy' (loss).
- Repeat until convergence

Used binary-cross entropy loss function. $H_p(q) = -\frac{1}{N} \sum_{i=1}^N y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$ Used "shot" data (8192) gathered from experiments to simulate quantum computation.

QRNN: Overview

- Iteratively apply QRNN cells to the input sequence, which perform parametrized rotations with nonlinear activation
- Use traditional optimizers (simulation) or SPSA

Amplitude Amplification and Architecture

- QRNN cells are run in the Repeat-until-success (RUS) mode
 - Allows desired operations to be implemented in fewer Clifford gates
- Success indicated by measuring 0 on ancilla, otherwise undo and retry
- Increase probability of success with oblivious amplitude amplification (OAA)

$$A |0^{m}\rangle |\psi\rangle = \sqrt{\lambda_{0}} |0^{m}\rangle U |\psi\rangle + \sum_{i=1}^{2^{m}-1} \sqrt{\lambda_{i}} |i\rangle R_{i} |\psi\rangle$$
$$S_{\pi} = (I^{m} - 2 |0^{m}\rangle \langle 0^{m}|) \otimes I$$
$$(-AS_{\pi}A^{\dagger}S_{\pi})^{j}A |0^{m}\rangle |\psi\rangle = \sin[(2j+1)\theta] |0^{m}\rangle U |\psi\rangle$$
$$+ \cos[(2j+1)\theta] |\Phi^{\perp}\rangle$$

Results

Loss Function Convergence

- QRNN sees rapid convergence in ~80 batches with subsequent overfitting
 - Consistent with empirical performance analysis by Bausch et. al

Training Accuracy Results

		Models	
		Single Parameterized Cell	Recurrent Circuit
Embeddings	Classical Embedding	63.9%	75.8%
	Lambeq Embedding	69.60%	Limited by Hardware Capability

Discussion

	Single Parameterized Cell	Recurrent Circuit
Classical Embedding	Base Model	 Limited by Embedding Complexity Input width was 5 bits, 439 trainable parameters Only naive character-level embeddings could be used (vs Word2Vec, etc)
Lambeq Embedding	 Limited by Model Complexity Input size is constrained Slow when processing long inputs and using large models 	 Future Work If good embeddings can be obtained, can have similar results with only a small number of parameters

Acknowledgement

CF.

Intro: NLP & Sentiment Analysis

- Unfortunately, current classical NLP models find this task somewhat difficult.
 - Context-dependent
 - Other difficulties include non-straightforward speech like sarcasm.
 - This added complexity to a body of text leads to inaccurate classification
- Due to the difficulties that classical models face, we aim to test whether a quantum model will be able to perform sentiment analysis better.

Quantum Circuit

• Quantum Circuits:

- Model for quantum computation, where the computation is carried out by an ordered sequence of quantum gates that work together to create the desired quantum states of certain qubits
- Can parameterized quantum circuits that contain variational quantum gates.
 - quantum algorithms that depend on free parameters
- Run quantum circuits on quantum computers to perform calculations to solve problems

• Relating to sentiment analysis:

• At high level, words in each input sentence are transformed into quantum states by using parameterized/variational quantum gates